## CMOS Voltage Converter

The Intersil ICL7662 is a monolithic high-voltage CMOS power supply circuit which offers unique performance advantages over previously available devices. The ICL7662 performs supply voltage conversion from positive to negative for an input range of +4.5 V to +20.0 V , resulting in complementary output voltages of -4.5 V to -20 V . Only 2 noncritical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7662 can also function as a voltage doubler, and will generate output voltages up to +38.6 V with a +20 V input.

Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N -Channel switch source-substrate junctions are not forward biased. This assures latchup free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 15.0 V . This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.

The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages ( +10 V to +20 V ), the LV pin is left floating to prevent device latchup.

## Features

- No External Diode Needed Over Entire Temperature Range
- Pin Compatible With ICL7660
- Simple Conversion of +15 V Supply to -15 V Supply
- Simple Voltage Multiplication $\left(\mathrm{V}_{\text {OUT }}=(-) \mathrm{n}_{\mathrm{IN}}\right)$
- 99.9\% Typical Open Circuit Voltage Conversion Efficiency
- 96\% Typical Power Efficiency
- Wide Operating Voltage Range 4.5 V to 20.0 V
- Easy to Use - Requires Only 2 External Non-Critical Passive Components


## Applications

- On Board Negative Supply for Dynamic RAMs
- Localized $\mu$ Processor (8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems
- Up to -20V for Op Amps


## Pinouts



## Ordering Information

| PART <br> NUMBER | TEMP. RANGE <br> $\left({ }^{\circ} \mathrm{C}\right)$ | PACKAGE | PKG. NO. |
| :--- | :---: | :--- | :--- |
| ICL7662CTV | 0 to 70 | 8 Pin Metal Can | T8.C |
| ICL7662CPA | 0 to 70 | 8 Ld PDIP | E8.3 |
| ICL7662CBD-0 | 0 to 70 | 14 Ld SOIC (N) | M14.15 |
| ICL7662CBD | 0 to 70 | 14 Ld SOIC (N) | M14.15 |
| ICL7662ITV | -40 to 85 | 8 Pin Metal Can | T8.C |
| ICL7662IPA | -40 to 85 | 8 Ld PDIP | E8.3 |
| ICL7662IBD | -40 to 85 | 14 Ld SOIC (N) | M14.15 |
| ICL7662MTV <br> (Note 1) | -55 to 125 | 8 Pin Metal Can | T8.C |

NOTE:

1. Add $/ 883$ to part number if $/ 883 \mathrm{~B}$ processing is required.

## Functional Block Diagram



## Absolute Maximum Ratings

Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V
Oscillator Input Voltage . . . . . . . . -0.3 V to ( $\mathrm{V}_{+}+0.3 \mathrm{~V}$ ) for $\mathrm{V}_{+}<10 \mathrm{~V}$
$\ldots . . . . . . . . .$. . (Note 2) $(V+-10 \mathrm{~V})$ to $(\mathrm{V}++0.3 \mathrm{~V})$ for $\mathrm{V}+>10 \mathrm{~V}$
Current Into LV (Note 2). . . . . . . . . . . . . . . . . . . . 20 2 A for $\mathrm{V}_{+}>10 \mathrm{~V}$
Output Short Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous

## Thermal Information

| Thermal Resistance (Typical, Note 3) | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ | $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: | :---: | :---: |
| PDIP Package | 150 | N/A |
| Plastic SOIC Package | 120 | N/A |
| Metal Can. | 156 | 68 |
| Maximum Lead Temperature (Solderin (SOIC - Lead Tips Only) |  | $.300^{\circ} \mathrm{C}$ |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
2. Connecting any terminal to voltages greater than $\mathrm{V}+$ or less than GND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of ICL7660S.
3. $\theta_{\mathrm{JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, Unless Otherwise Specified. Refer to Figure 14.

| PARAMETER | SYMBOL | TEST CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage Range - Lo | V+L | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=\mathrm{GND}$ | Min $<\mathrm{T}_{\mathrm{A}}<\operatorname{Max}$ | 4.5 | - | 11 | V |
| Supply Voltage Range - Hi | $\mathrm{V}+\mathrm{H}$ | $R_{L}=10 \mathrm{k} \Omega, \mathrm{LV}=$ Open | $\operatorname{Min}<\mathrm{T}_{\mathrm{A}}<\operatorname{Max}$ | 9 | - | 20 | V |
| Supply Current | $1+$ | $\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{LV}=$ Open | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | - | 0.25 | 0.60 | mA |
|  |  |  | $\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \end{aligned}$ | - | 0.30 | 0.85 | mA |
|  |  |  | $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ | - | 0.40 | 1.0 | mA |
| Output Source Resistance | $\mathrm{R}_{\mathrm{O}}$ | $\begin{aligned} & \mathrm{IO}=20 \mathrm{~mA}, \\ & \mathrm{LV}=\text { Open } \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | - | 60 | 100 | $\Omega$ |
|  |  |  | $\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \end{aligned}$ | - | 70 | 120 | $\Omega$ |
|  |  |  | $-55^{\circ} \mathrm{C}<\mathrm{T}_{\text {A }}<125^{\circ} \mathrm{C}$ | - | 90 | 150 | $\Omega$ |
| Supply Current | I+ | $\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \\ & \mathrm{LV}=\mathrm{GND} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | - | 20 | 150 | $\mu \mathrm{A}$ |
|  |  |  | $\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \end{aligned}$ | - | 25 | 200 | $\mu \mathrm{A}$ |
|  |  |  | $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ | - | 30 | 250 | $\mu \mathrm{A}$ |
| Output Source Resistance | $\mathrm{R}_{\mathrm{O}}$ | $\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}, \\ & \mathrm{LV}=\mathrm{GND} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | - | 125 | 200 | $\Omega$ |
|  |  |  | $\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \end{aligned}$ | - | 150 | 250 | $\Omega$ |
|  |  |  | $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ | - | 200 | 350 | $\Omega$ |
| Oscillator Frequency | FOSC |  |  | - | 10 | - | kHz |
| Power Efficiency | PEFF | $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$, | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 93 | 96 | - | \% |
|  |  |  | Min $<\mathrm{T}_{\mathrm{A}}<\operatorname{Max}$ | 90 | 95 | - | \% |
| Voltage Conversion Efficiency | VoEf | $\mathrm{R}_{\mathrm{L}}=\infty$ | Min $<\mathrm{T}_{\mathrm{A}}<\operatorname{Max}$ | 97 | 99.9 | - | \% |
| Oscillator Sink or Source Current | losc | $\mathrm{V}_{+}=5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{OSC}}=0 \mathrm{~V} \text { to }+5 \mathrm{~V}\right)$ |  | - | 0.5 | - | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}+=15 \mathrm{~V}\left(\mathrm{~V}_{\text {OSC }}=+5 \mathrm{~V}\right.$ to $\left.+15 \mathrm{~V}\right)$ |  | - | 4.0 | - | $\mu \mathrm{A}$ |

NOTE:
4. Pin 1 is a Test pin and is not connected in normal use. When the TEST pin is connected to $V_{+}$, an internal transmission gate disconnects any external parasitic capacitance from the oscillator which would otherwise reduce the oscillator frequency from its nominal value.

Typical Performance Curves (See Figure 14, Test Circuit)


FIGURE 1. OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE


FIGURE 3. OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE


FIGURE 5. OSCILLATOR FREQUENCY vs SUPPLY VOLTAGE

NOTE: All typical values have been characterized but are not tested.


FIGURE 2. OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE


FIGURE 4. POWER CONVERSION EFFICIENCY AND OUTPUT SOURCE RESISTANCE AS A FUNCTION OF OSCILLATOR FREQUENCY


FIGURE 6. FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL OSCILLATOR CAPACITANCE

Typical Performance Curves (See Figure 14, Test Circuit) (Continued)


FIGURE 7. UNLOADED OSCILLATOR FREQUENCY AS A FUNCTION OF TEMPERATURE


FIGURE 9. OUTPUT VOLTAGE AS A FUNCTION OF LOAD CURRENT


FIGURE 11. SUPPLY CURRENT AND POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT


FIGURE 8. OUTPUT VOLTAGE AS A FUNCTION OF LOAD CURRENT


FIGURE 10. SUPPLY CURRENT AND POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD


FIGURE 12. FREQUENCY OF OSCILLATION AS A FUNCTION OF SUPPLY VOLTAGE

## Typical Performance Curves (See Figure 14, Test Circuit) (Continued)



FIGURE 13. SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY
NOTE:
5. These curves include in the supply current that current fed directly into the load $R_{L}$ from the $V_{+}$(See Figure 14). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7662, to the negative side of the load. Ideally, $\mathrm{V}_{\text {OUT }} \simeq 2 \mathrm{~V}_{\text {IN }}, I_{S} \simeq 2 \mathrm{I}_{\mathrm{L}}$, so $\mathrm{V}_{\text {IN }} \times \mathrm{I}_{\mathrm{S}} \simeq \mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\mathrm{L}}$.

## Circuit Description

The ICL7662 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 15, which shows an idealized negative voltage converter. Capacitor $C_{1}$ is charged to a voltage, $\mathrm{V}_{+}$, for the half cycle when switches $S_{1}$ and $S_{3}$ are closed. (Note: Switches $S_{2}$ and $S_{4}$ are open during this half cycle.) During the second half cycle of operation, switches $S_{2}$ and $S_{4}$ are closed, with $S_{1}$ and $S_{3}$ open, thereby shifting capacitor $\mathrm{C}_{1}$ negatively by $\mathrm{V}+$ volts. Charge is then transferred from $C_{1}$ to $C_{2}$ such that the voltage on $\mathrm{C}_{2}$ is exactly $\mathrm{V}+$, assuming ideal switches and no load on $\mathrm{C}_{2}$. The ICL7662 approaches this ideal situation more closely than existing non-mechanical circuits.
In the ICL7662, the 4 switches of Figure 15 are MOS power switches; $S_{1}$ is a P-Channel device and $S_{2}, S_{3}$ and $S_{4}$ are N -Channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3}$ and $S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ( $\mathrm{V}_{\text {OUT }}=\mathrm{V}+$ ), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL7662 by a logic network which senses the output voltage ( $\mathrm{V}_{\mathrm{OUT}}$ ) together with the level translators, and switches the substrates of $S_{3}$ and $S_{4}$ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7662 is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 10 V the LV terminal must be left open to insure latchup proof operation, and prevent device damage.


NOTE: For large value of $\mathrm{C}_{\text {OSC }}(>1000 \mathrm{pF})$ the values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ should be increased to $100 \mu \mathrm{~F}$.

FIGURE 14. ICL7662 TEST CIRCUIT


## FIGURE 15. IDEALIZED NEGATIVE CONVERTER

## Theoretical Power Efficiency Considerations

In theory a voltage multiplier can approach $100 \%$ efficiency if certain conditions are met:

1. The drive circuitry consumes minimal power.
2. The output switches have extremely low ON resistance and virtually no offset.
3. The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7662 approaches these conditions for negative voltage multiplication if large values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are used.
ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:
$E=1 / 2 C_{1}\left(V_{1}{ }^{2}-V_{2}{ }^{2}\right)$
where $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ are the voltages on $\mathrm{C}_{1}$ during the pump and transfer cycles. If the impedances of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are relatively high at the pump frequency (refer to Figure 15) compared to the value of $R_{L}$, there will be a substantial difference in the voltages $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$. Therefore it is not only desirable to make $\mathrm{C}_{2}$ as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for $\mathrm{C}_{1}$ in order to achieve maximum efficiency of operation.

## Do's and Don'ts

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 10 V .
3. When using polarized capacitors, the + terminal of $C_{1}$ must be connected to pin 2 of the ICL7662 and the + terminal of $\mathrm{C}_{2}$ must be connected to GROUND.
4. If the voltage supply driving the 7662 has a large source impedance ( $25 \Omega-30 \Omega$ ), then a $2.2 \mu \mathrm{~F}$ capacitor from pin 8 to ground may be required to limit rate of rise of input voltage to less than $2 \mathrm{~V} / \mu \mathrm{s}$.
5. User should insure that the output (pin 5) does not go more positive than GND (pin 3). Device latch up will occur under these conditions.

A 1N914 or similar diode placed in parallel with $\mathrm{C}_{2}$ will prevent the device from latching up under these conditions. (Anode pin 5, Cathode pin 3).

## Typical Applications

## Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7662 for generation of negative supply voltages. Figure 16 shows typical connections to provide a negative supply where a positive supply of +4.5 V to 20.0 V is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 10 V .

The output characteristics of the circuit in Figure 16A can be approximated by an ideal voltage source in series with a resistance as shown in Figure 16B. The voltage source has a value of $-\left(\mathrm{V}_{+}\right)$. The output impedance $\left(\mathrm{R}_{\mathrm{O}}\right)$ is a function of the ON resistance of the internal MOS switches (shown in Figure 2), the switching frequency, the value of $C_{1}$ and $C_{2}$, and the ESR (equivalent series resistance) of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$. A good first order approximation for $\mathrm{R}_{\mathrm{O}}$ is:

$$
\begin{aligned}
& R_{O} \cong 2\left(R_{S W} 1+R_{S W}+E S R C_{1}\right) \\
& +2\left(R_{S W}+R_{S W 4}+E S R C_{1}\right)+\frac{1}{f_{P U M P} \times C_{1}}+E S R C_{2} \\
& \left(f_{P U M P}=\frac{f_{O S C},}{2} R_{S W X}=\right.\text { MOSFET switch resistance) }
\end{aligned}
$$

Combining the four $R_{S W X}$ terms as $R_{S W}$, we see that

$$
\mathrm{R}_{\mathrm{O}} \cong 2 \times \mathrm{R}_{\mathrm{SW}}+\frac{1}{\mathrm{f}_{\mathrm{PUMP}} \times \mathrm{C}_{1}}+4 \times \mathrm{ESRC}_{1}+\mathrm{ESRC}_{2} \Omega
$$

$R_{S W}$, the total switch resistance, is a function of supply voltage and temperature (See the Output Source Resistance graphs), typically $24 \Omega$ at $+25^{\circ} \mathrm{C}$ and 15 V , and $53 \Omega$ at $+25^{\circ} \mathrm{C}$ and 5 V . Careful selection of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ will reduce the remaining terms, minimizing the output impedance. High value capacitors will reduce the $1 /\left(f_{\text {PUMP }} \times \mathrm{C}_{1}\right)$ component, and low FSR capacitors will lower the ESR term. Increasing the oscillator frequency will reduce the $1 /\left(\right.$ f PUMP $\left.\times \mathrm{C}_{1}\right)$ term, but may have the side effect of a net increase in output impedance when $\mathrm{C}_{1}>10 \mu \mathrm{~F}$ and there is no longer enough time to fully charge the capacitors every cycle. In a typical application where $\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{kHz}$ and $\mathrm{C}=\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mu \mathrm{~F}$ :

$$
\begin{gathered}
\mathrm{R}_{\mathrm{O}} \cong 2 \times 23+\frac{1}{\left(5 \times 10^{3} \times 10 \times 10^{-6}\right)}+4 \mathrm{ESRC}_{1}+\mathrm{ESRC}_{2} \\
\mathrm{R}_{\mathrm{O}} \cong 46+20+5 \times \mathrm{ESR}_{\mathrm{C}} \Omega
\end{gathered}
$$

Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of 5 , a high value could potentially swamp out a low $1 /\left(\right.$ f PUMP $\left.\times C_{1}\right)$ term, rendering an increase in switching frequency or filter capacitance ineffective. Typical electrolytic capacitors may have ESRs as high as $10 \Omega$.


FIGURE 16. SIMPLE NEGATIVE CONVERTER AND ITS OUTPUT EQUIVALENT

## Output Ripple

ESR also affects the ripple voltage seen at the output. The total ripple is determined by $2 \mathrm{~V}, \mathrm{~A}$ and B , as shown in Figure 16. Segment $A$ is the voltage drop across the ESR of $C_{2}$ at the instant it goes from being charged by $\mathrm{C}_{1}$ (current flowing into $\mathrm{C}_{2}$ ) to being discharged through the load (current flowing out of $\mathrm{C}_{2}$ ). The magnitude of this current change is 2 $\times$ lout, hence the total drop is $2 \times \mathrm{I}_{\text {OUT }} \times \mathrm{ESRC}_{2} \mathrm{~V}$. Segment $B$ is the voltage change across $C_{2}$ during time $t_{2}$, the half of the cycle when $\mathrm{C}_{2}$ supplies current the load. The drop at B is $\mathrm{I}_{\mathrm{OUT}} \times \mathrm{t}_{2} / \mathrm{C}_{2} \mathrm{~V}$. The peak-to-peak ripple voltage is the sum of these voltage drops:
$\mathrm{V}_{\mathrm{RIPPLE}} \cong\left(\frac{1}{2 \times \mathrm{f}_{\mathrm{PUMP}} \times \mathrm{C}_{2}}+2 \mathrm{ESRC}_{2} \times \mathrm{I}_{\mathrm{OUT}}\right)$

Again, a low ESR capacitor will result in a higher performance output.

## Paralleling Devices

Any number of ICL7662 voltage converters may be paralleled (Figure 18) to reduce output resistance. The reservoir capacitor, $\mathrm{C}_{2}$, serves all devices while each device requires its own pump capacitor, $\mathrm{C}_{1}$. The resultant output resistance would be approximately:
$R_{\text {OUT }}=\frac{R_{\text {OUT (of ICL7662) }}}{n \text { (number of devices) }}$

## Cascading Devices

The ICL7662 may be cascaded as shown in Figure 19 to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:
$\mathrm{V}_{\text {OUT }}=-n\left(\mathrm{~V}_{\text {IN }}\right)$,
where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7662 ROUT values.


FIGURE 17. OUTPUT RIPPLE


FIGURE 18. PARALLELING DEVICES


FIGURE 19. CASCADING DEVICES FOR INCREASED OUTPUT VOLTAGE

## Changing the ICL7662 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 20. In order to prevent possible device latchup, a $1 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to $\mathrm{V}+$ supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positivegoing edge of the clock.


FIGURE 20. EXTERNAL CLOCKING
It is also possible to increase the conversion efficiency of the ICL7662 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, COSC, as shown in Figure 21. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of $C_{1}$ and $C_{2}$ by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (OSC) and $V$ + will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10 ), and thereby necessitate a corresponding increase in the value of $C_{1}$ and $C_{2}$ (from 10 mF to 100 mF ).


FIGURE 21. LOWERING OSCILLATOR FREQUENCY

## Positive Voltage Doubling

The ICL7662 may be employed to achieve positive voltage doubling using the circuit shown in Figure 22. In this application, the pump inverter switches of the ICL7662 are used to charge $C_{1}$ to a voltage level of $V_{+}-V_{F}$ (where $V_{+}$is the supply voltage and $V_{F}$ is the forward voltage drop of diode $D_{1}$ ). On the transfer cycle, the voltage on $C_{1}$ plus the supply voltage $(\mathrm{V}+)$ is applied through diode $\mathrm{C}_{2}$ to capacitor $\mathrm{C}_{2}$. The voltage thus created on $\mathrm{C}_{2}$ becomes $\left(2 \mathrm{~V}_{+}\right)\left(2 \mathrm{~V}_{\mathrm{F}}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes $D_{1}$ and $D_{2}$.

The source impedance of the output $\left(\mathrm{V}_{\mathrm{OUT}}\right)$ will depend on the output current, but for $\mathrm{V}_{+}=15 \mathrm{~V}$ and an output current of 10 mA it will be approximately $70 \Omega$.


NOTE: $D_{1}$ and $D_{2}$ can be any suitable diode.
FIGURE 22. POSITIVE VOLTAGE DOUBLER


FIGURE 23. COMBINED NEGATIVE CONVERTER AND POSITIVE DOUBLER

## Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 23 combines the functions shown in Figure 16 and Figure 22 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 V and -5 V from an existing +5 V supply. In this instance capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{3}$ perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

## Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 24. The combined load will be evenly shared between the two sides and, a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure $19,+30 \mathrm{~V}$ can be converted (via +15 V , and -15 V ) to a nominal -30 V , although with rather high series output resistance ( $\sim 250 \Omega$ ).

## Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7662 can be a problem, particularly if the load current varies substantially. The circuit of Figure 25 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage.
Direct feedback is inadvisable, since the ICL7662s output does not respond instantaneously to a change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the ICL7662, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than $5 \Omega$ to a load of 10 mA .

## Other Applications

Further information on the operation and use of the ICL7662 may be found in AN051 "Principles and Applications of the ICL7660 CMOS Voltage Converter".


FIGURE 24. SPLITTING A SUPPLY IN HALF


FIGURE 25. REGULATING THE OUTPUT VOLTAGE

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com


[^0]:    Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

