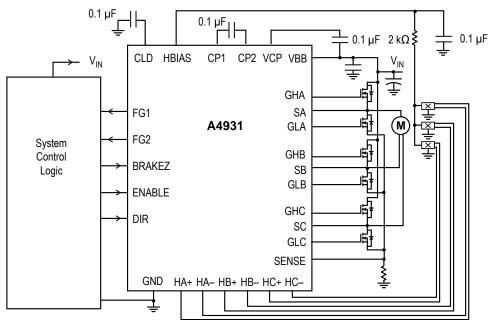


Features and Benefits

- Drives 6 N-channel MOSFETs
- Synchronous rectification for low power dissipation
- Internal UVLO and thermal shutdown circuitry
- Hall element inputs
- PWM current limiting
- Dead time protection
- FG outputs
- Standby mode
- Lock detect protection
- Overvoltage protection

Package: 28-contact QFN (ET package)

Description


The A4931 is a complete 3-phase brushless DC motor pre-driver. The device is capable of driving a wide range of N-channel power MOSFETs and can support motor supply voltages up to 30 V. Commutation logic is determined by three Hall-element inputs spaced at 120°.

Other features include fixed off-time pulse width modulation (PWM) current control for limiting inrush current, locked-rotor protection with adjustable delay, thermal shutdown, overvoltage monitor, and synchronous rectification. Internal synchronous rectification reduces power dissipation by turning on the appropriate MOSFETs during current decay, thus shorting the body diode with the low $R_{DS(on)}$ MOSFET. Overvoltage protection disables synchronous rectification when the motor pumps the supply voltage beyond the overvoltage threshold during current recirculation.

The A4931 offers enable, direction, and brake inputs that can control current using either phase or enable chopping. Logic outputs FG1 and FG2 can be used to accurately measure motor rotation. Output signals toggle state during Hall transitions, providing an accurate speed output to a microcontroller or speed control circuit.

Operating temperature range is -20°C to 105°C. The A4931 is supplied in a 5 mm \times 5 mm, 28-terminal QFN package with exposed thermal pad. This small footprint package is lead (Pb) free with 100% matte tin leadframe plating.

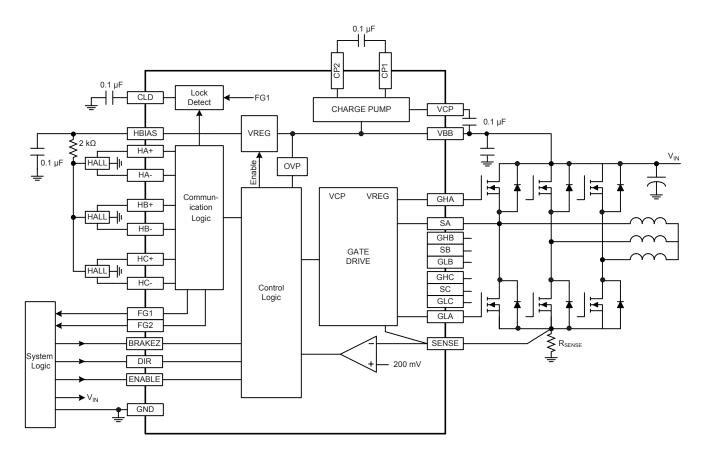
Typical Application

Selection Guide

Part Number Packing		Package		
A4931METTR-T	1500 pieces per reel	5 mm x 5 mm, 0.90 mm nominal height QFN		

Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Units
Load Supply Voltage	V _{BB}		38	V
Motor Phase Output	S _X	t _w < 500 ns	-3	V
Hall Input	V _{Hx}	DC	-0.3 to 7	V
Logic Input Voltage Range	V _{IN}		-0.3 to 7	V
Operating Ambient Temperature	T _A	Range M	-20 to 105	°C
Maximum Junction Temperature	T _J (max)		150	°C
Storage Temperature	T _{stg}		-40 to 150	°C


Thermal Characteristics

Characteristic	Symbol	Test Conditions*	Rating	Units
Package Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	4-layer PCB based on JEDEC standard	32	°C/W
Package Thermal Resistance, Junction to Exposed Pad	$R_{\theta JP}$		2	°C/W

^{*}For additional information, refer to the Allegro website.

Functional Block Diagram

Terminal List

Number	Name	Description
1	HA+	Hall input A
2	HA -	Hall input A
3	HB+	Hall input B
4	HB -	Hall input B
5	HC+	Hall input C
6	HC-	Hall input C
7	GND	Ground
8	HBIAS	Hall bias power supply output
9	CP1	Charge pump capacitor terminal
10	CP2	Charge pump capacitor terminal
11	VBB	Supply voltage
12	VCP	Reservoir capacitor terminal
13	SENSE	Sense resistor connection
14	GLC	Low side gate drive C

Number	Name	Description
15	GLB	Low side gate drive B
16	GLA	Low side gate drive A
17	GHC	High side gate drive C
18	SC	High side source connection C
19	GHB	High side gate drive B
20	SB	High side source connection B
21	GHA	High side gate drive A
22	SA	High side source connection A
23	FG1	FG 1 speed control output (3 Φ inputs)
24	FG2	FG 2 speed control output (ΦA input)
25	CLD	Locked rotor detect timing capacitor
26	DIR	Logic input – motor direction
27	ENABLE	Logic input – external PWM control
28	BRAKEZ	Logic input – motor brake (active low)

A4931

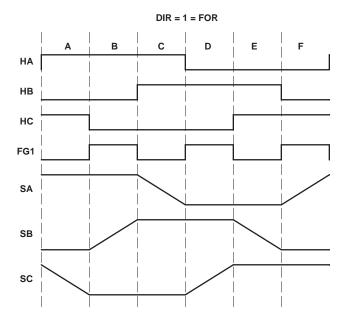
3-Phase Brushless DC Motor Pre-Driver

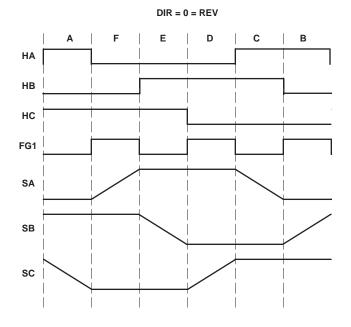
ELECTRICAL CHARACTERISTICS* Valid at T_A = 25°C, V_{BB} = 24 V, unless noted otherwise

Motor Supply Current	Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Search Search Search Search Charge pump on, outputs disabled, Standby mode − 3 3.5 mA	Supply Voltage Range	V _{BB}	Operating	8	_	V_{BBOV}	V
HBIAS	Motor Cumply Current		f _{PWM} < 30 kHz, C _{LOAD} = 1000 pF	_	5	6	mA
HBIAS Current Limit	Motor Supply Current	I _{BB}	Charge pump on, outputs disabled, Standby mode	_	3	3.5	mA
Control Logic Control Logic Control Logic Control Logic Input Voltage Vinit Vin	HBIAS	V _{HBIAS}	0 mA ≤ I _{HBIAS} ≤ 24 mA	7.2	7.5	7.8	V
V V V V V V V V V V	HBIAS Current Limit	I _{HBIASlim}		30	_	_	mA
Content Co	Control Logic						
Content Co	Logic Input Voltage	V _{IN(1)}		2	_	_	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Logic input voltage			_	_	0.8	V
I _{N(O)} V _N = 0.8 V −1 −1 −1 −1 0.1 μA μA I _{N(D)} I _{N(D)} V _N = 0.8 V −1 −1 −1 −1 0.1 μA I _{N(D)} I _{N(D}	Logic Input Compat		V _{IN} = 2 V	-1	<1.0	1	μΑ
Page	Logic Input Current		V _{IN} = 0.8 V	-1	<-1.0	1	μΑ
DIR, BRAKEZ pins 700 1000 1300 ns	Innut Die Clitab Daiast		ENB pin	350	500	650	ns
HBIAS Wake-up Delay, Standby Mode Carter of State Carter of	input Pin Gilten Reject	^I GLITCH	DIR, BRAKEZ pins	700	1000	1300	ns
Gate Drive High-Side Gate Drive Output V _{GS(H)} Relative to V _{BB} , I _{GATE} = 2 mA 7 - - V Low-Side Gate Drive Output V _{GS(L)} I _{GATE} = 2 mA 7 - - V Gate Drive Current (Sourcing) I _{Gate} GH = GL = 4 V 20 30 - mA Gate Drive Pull Down Resistance R _{Gate} GH = GL = 4 V 20 30 - mA Dead Time I _{dead} 700 1000 1300 ns Current Limit Input Threshold V _{REF} 180 200 220 mV Fixed Off-Time I _{OFF} 18 25 37 µs Protection Thermal Shutdown Temperature T _{JTSD} 185 170 185 °C Thermal Shutdown Hysteresis T _{JTSDhys} 155 170 185 °C VBB UVLO Enable Threshold V _{BBUV} Rising V _{BB} 6.2 7 7.85 V VBB UVLO Hysteresis V _{BBUV} Relative to V _{BB} 4.6	ENB Standby Pulse Propagation Delay	t _{dENB}	To outputs off	2.1	3	3.9	ms
Gate Drive High-Side Gate Drive Output V _{OS(H)} Relative to V _{BB} , I _{GATE} = 2 mA 7 - - V Low-Side Gate Drive Output V _{OS(L)} I _{GATE} = 2 mA 7 - - V Gate Drive Outrent (Sourcing) I _{Gate} GH = GL = 4 V 20 30 - mA Gate Drive Pull Down Resistance R _{Gate} 10 28 40 Ω Dead Time I _{bead} 700 1000 1300 ns Current Limit Input Threshold V _{REF} 180 200 220 mV Fixed Off-Time t _{0FF} 18 25 37 µs Protection Thermal Shutdown Temperature T _{JTSD} 155 170 185 °C Thermal Shutdown Hysteresis T _{JTSD} M _{SBUV} Rising V _{BB} 6.2 7 7.85 V VBB UVLO Enable Threshold V _{BBUV} Rising V _{BB} 6.2 7 7.85 V VBB UVLO Hysteresis V _{BBUV} <td< td=""><td>HBIAS Wake-up Delay, Standby Mode</td><td>t_{dHBIAS}</td><td>C_{HBIAS} = 0.1 μF</td><td>_</td><td>15</td><td>25</td><td>μs</td></td<>	HBIAS Wake-up Delay, Standby Mode	t _{dHBIAS}	C _{HBIAS} = 0.1 μF	_	15	25	μs
Low-Side Gate Drive Output V _{GS(L)} I _{GATE} = 2 mA 7 - - V Gate Drive Current (Sourcing) I _{Gate} GH = GL = 4 V 20 30 - mA Gate Drive Pull Down Resistance R _{Gate} 10 28 40 Ω Dead Time t _{dead} 700 1000 1300 ns Current Limit Input Threshold V _{REF} 180 200 220 mV Fixed Off-Time t _{OFF} 18 25 37 μs Protection Thermal Shutdown Temperature T _{JTSD} t _{OFF} 155 170 185 °C Thermal Shutdown Hysteresis T _{JTSDhys} 14 15 26 °C VBB UVLO Enable Threshold V _{BBUV} Rising V _{BB} 6.2 7 7.85 V VCP UVLO V _{CPUV} Relative to V _{BB} 4.6 - 6 V VEB UVLO Enable Threshold V _{BBOV} Rising V _{BB} 30 33 3	Gate Drive			•			
Low-Side Gate Drive Output V _{GS(L)} I _{GATE} = 2 mA 7 - - V Gate Drive Current (Sourcing) I _{Gate} GH = GL = 4 V 20 30 - mA Gate Drive Pull Down Resistance R _{Gate} 10 28 40 Ω Dead Time t _{dead} 700 1000 1300 ns Current Limit Input Threshold V _{REF} 180 200 220 mV Fixed Off-Time t _{OFF} 18 25 37 μs Protection Thermal Shutdown Temperature T _{JTSD} t _{OFF} 155 170 185 °C Thermal Shutdown Hysteresis T _{JTSDhys} 14 15 26 °C VBB UVLO Enable Threshold V _{BBUV} Rising V _{BB} 6.2 7 7.85 V VCP UVLO V _{CPUV} Relative to V _{BB} 4.6 - 6 V VEB UVLO Enable Threshold V _{BBOV} Rising V _{BB} 30 33 3	High-Side Gate Drive Output	V _{GS(H)}	Relative to V _{BB} , I _{GATE} = 2 mA	7	_	_	V
Gate Drive Current (Sourcing) I_Gate GH = GL = 4 V 20 30 - mA	Low-Side Gate Drive Output		I _{GATE} = 2 mA	7	_	_	V
Gate Drive Pull Down Resistance R_Gate 10 28 40 Ω	Gate Drive Current (Sourcing)	1	GH = GL = 4 V	20	30	_	mA
Dead Time t _{dead} 700 1000 1300 ns Current Limit Input Threshold V _{REF} 180 200 220 mV Fixed Off-Time t _{OFF} 18 25 37 μs Protection Thermal Shutdown Temperature T _{JTSD} 155 170 185 °C Thermal Shutdown Hysteresis T _{JTSDhys} 14 15 26 °C VBB UVLO Enable Threshold V _{BBUV} Rising V _{BB} 6.2 7 7.85 V VBB UVLO Hysteresis V _{BBUVhys} 0.4 0.75 1 V VCP UVLO V _{CPUV} Relative to V _{BB} 4.6 - 6 V Lock Detect Duration t _{lock} C = 0.1 μF 1.5 2 2.5 s VBB Overvoltage Threshold V _{BBOV} Rising V _{BB} 30 33 37.5 V Hall Input Current I _{HALL} V _{IN} = 0.2 to 3.5 V -1 0 1 μA	Gate Drive Pull Down Resistance			10	28	40	Ω
Fixed Off-Time t _{OFF} t _{OFF} 18 25 37 μs Protection Thermal Shutdown Temperature T _{JTSD} ys 155 170 185 °C Thermal Shutdown Hysteresis T _{JTSDhys} 14 15 26 °C VBB UVLO Enable Threshold V _{BBUV} ys 6.2 7 7.85 V VBB UVLO Hysteresis V _{BBUVhys} 0.4 0.75 1 V VCP UVLO V _{CPUV} Relative to V _{BB} 4.6 - 6 V Lock Detect Duration t _{lock} C = 0.1 μF 1.5 2 2.5 s VBB Overvoltage Threshold V _{BBOV} Rising V _{BB} 30 33 37.5 V Hall Logic Hall Input Current I _{HALL} V _{IN} = 0.2 to 3.5 V -1 0 1 μA Common Mode Input Range V _{CMR} 0.2 - 3.5 V AC Input Voltage Range V _{HALL} 60 - -	Dead Time			700	1000	1300	ns
Fixed Off-Time t _{OFF} t _{OFF} 18 25 37 μs Protection Thermal Shutdown Temperature T _{JTSD} ys 155 170 185 °C Thermal Shutdown Hysteresis T _{JTSDhys} 14 15 26 °C VBB UVLO Enable Threshold V _{BBUV} ys 6.2 7 7.85 V VBB UVLO Hysteresis V _{BBUVhys} 0.4 0.75 1 V VCP UVLO V _{CPUV} Relative to V _{BB} 4.6 - 6 V Lock Detect Duration t _{lock} C = 0.1 μF 1.5 2 2.5 s VBB Overvoltage Threshold V _{BBOV} Rising V _{BB} 30 33 37.5 V Hall Logic Hall Input Current I _{HALL} V _{IN} = 0.2 to 3.5 V -1 0 1 μA Common Mode Input Range V _{CMR} 0.2 - 3.5 V AC Input Voltage Range V _{HALL} 60 - -	Current Limit Input Threshold	V _{REF}		180	200	220	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fixed Off-Time	t _{OFF}		18	25	37	μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Protection						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thermal Shutdown Temperature	T _{JTSD}		155	170	185	°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thermal Shutdown Hysteresis			14	15	26	°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VBB UVLO Enable Threshold		Rising V _{BB}	6.2	7	7.85	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VBB UVLO Hysteresis	V _{BBUVhys}		0.4	0.75	1	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VCP UVLO		Relative to V _{BB}	4.6	_	6	V
Hall LogicHall Input Current I_{HALL} V_{IN} = 0.2 to 3.5 V-101μACommon Mode Input Range V_{CMR} 0.2-3.5VAC Input Voltage Range V_{HALL} 60mV $_{p-p}$ Hall Thresholds V_{th} Difference between Hall inputs at transitions-+10,-10-mVHall Threshold Hysteresis V_{HYS} V_{HYS} V_{HYS} 102030mVPulse Reject Filter V_{pulse} -2-μsFGFG Output Saturation Voltage $V_{FG(sat)}$ $V_{FG(sat)}$ $V_{FG(sat)}$ $V_{FG(sat)}$ $V_{FG(sat)}$ $V_{FG(sat)}$ $V_{FG(sat)}$ $V_{FG(sat)}$ $V_{FG(sat)}$	Lock Detect Duration	t _{lock}	C = 0.1 µF	1.5	2	2.5	S
Hall Input Current I_{HALL} V_{IN} = 0.2 to 3.5 V -1 0 1 μA Common Mode Input Range V_{CMR} 0.2 $-$ 3.5 V AC Input Voltage Range V_{HALL} 60 $ mV_{p-p}$ Hall Thresholds V_{th} Difference between Hall inputs at transitions $-$ +10,-10 $ mV$ Hall Threshold Hysteresis V_{HYS} T_J = 25°C T_J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VBB Overvoltage Threshold	V _{BBOV}	Rising V _{BB}	30	33	37.5	V
Common Mode Input Range V_{CMR} 0.2 - 3.5 V AC Input Voltage Range V_{HALL} 60 - - mV_{p-p} Hall Thresholds V_{th} Difference between Hall inputs at transitions - $+10,-10$ - mV Hall Threshold Hysteresis V_{HYS} $T_J = 25^{\circ}C$ 10 20 30 mV Pulse Reject Filter t_{pulse} - 2 - μ FG FG Output Saturation Voltage $V_{FG(sat)}$ $V_{FG($	Hall Logic						
AC Input Voltage Range V_{HALL} $G_{O} = 0.05$ V_{HALL} $G_{O} = $	Hall Input Current	I _{HALL}	V _{IN} = 0.2 to 3.5 V	-1	0	1	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Common Mode Input Range	V _{CMR}		0.2	_	3.5	V
$ V_{HYS} = V_{$	AC Input Voltage Range	V _{HALL}		60	_	_	mV _{p-p}
Hall Threshold Hysteresis V_{HYS} $T_J = -20^{\circ}\text{C to } 125^{\circ}\text{C}$ 5 20 40 mV Pulse Reject Filter t_{pulse} $ 2$ $ \mu s$ FG Output Saturation Voltage $V_{FG(sat)}$ $I_{FG} = 2$ mA $ 0.5$ V	Hall Thresholds	V _{th}	Difference between Hall inputs at transitions	_	+10,–10	-	mV
Pulse Reject Filter t_{pulse} $-$ 2 $ \mu s$ FG Output Saturation Voltage $V_{FG(sat)}$ I_{FG} = 2 mA $-$ 0.5 V	Hall Throshold Hyetoroxia		$T_J = 25^{\circ}C$	10	20	30	mV
FG V _{FG(sat)} I _{FG} = 2 mA - - 0.5 V	Tiali Tillesilolu Tiystelesis		$T_J = -20$ °C to 125°C	5	20	40	mV
FG V _{FG(sat)} I _{FG} = 2 mA - - 0.5 V	Pulse Reject Filter	t _{pulse}		_	2	_	μs
	FG						
	FG Output Saturation Voltage	V _{FG(sat)}	I _{FG} = 2 mA	_	_	0.5	V
	FG Leakage Current		V _{FG} = 5 V	_		1	μA

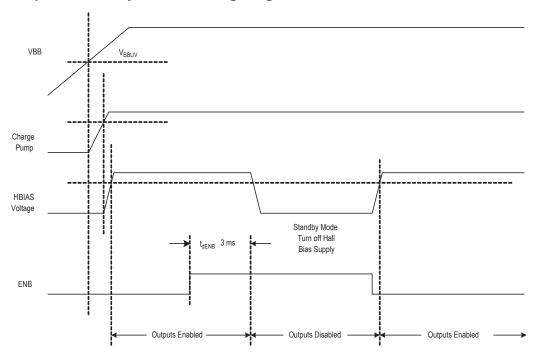
^{*}Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the specified maximum and minimum limits.

For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.

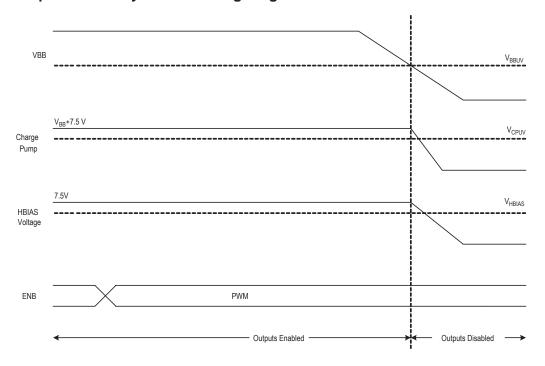

A4931


3-Phase Brushless DC Motor Pre-Driver

Logic States Table (See timing charts, below) X = Don't Care, Z = high impedance


Condition		Inputs					Resulting Pre-Driver Outputs					Motor Output			
		НА	НВ	НС	BRAKEZ	ENB	GHA	GLA	GHB	GLB	GHC	GLC	Α	В	С
	Α	+	_	+	HI	LO	HI	LO	LO	HI	LO	LO	HI	LO	Z
	В	+	_	-	HI	LO	HI	LO	LO	LO	LO	HI	HI	Z	LO
DIR = 1	С	+	+	-	HI	LO	LO	LO	HI	LO	LO	HI	Z	HI	LO
(Forward)	D	_	+	-	HI	LO	LO	HI	HI	LO	LO	LO	LO	HI	Z
	Е	_	+	+	HI	LO	LO	HI	LO	LO	HI	LO	LO	Z	HI
	F	_	_	+	HI	LO	LO	LO	LO	HI	HI	LO	Z	LO	HI
	Α	+	_	+	HI	LO	LO	HI	HI	LO	LO	LO	LO	HI	Z
	F	_	_	+	HI	LO	LO	LO	HI	LO	LO	HI	Z	HI	LO
DIR = 0	Е	_	+	+	HI	LO	HI	LO	LO	LO	LO	HI	HI	Z	LO
(Reverse)	D	_	+	-	HI	LO	HI	LO	LO	HI	LO	LO	HI	LO	Z
	С	+	+	-	HI	LO	LO	LO	LO	HI	HI	LO	Z	LO	HI
	В	+	-	-	HI	LO	LO	HI	LO	LO	HI	LO	LO	Z	HI
Fault*		+	+	+	HI	Х	LO	LO	LO	LO	LO	LO	Z	Z	Z
Fault*		_	_	_	HI	X	LO	LO	LO	LO	LO	LO	Z	Z	Z
Brake*		Х	Х	Χ	LO	Х	LO	HI	LO	HI	LO	HI	LO	LO	LO

^{*} DIR = Don't Care



Power-up and Standby Modes Timing Diagram

Power-up and Standby Modes Timing Diagram

Functional Description

Current Regulation Load current is regulated by an internal fixed off-time PWM control circuit. When the outputs of the full bridge are turned on, current increases in the motor winding until it reaches a value, I_{TRIP}, given by:

$$I_{\text{TRIP}} = 200 \text{ mV} / R_{\text{SENSE}}$$

When I_{TRIP} is reached, the sense comparator resets the source enable latch, turning off the source driver. At this point, load inductance causes the current to recirculate for the fixed off-time period.

Enable Logic The Enable input terminal (ENB pin) allows external PWM. ENB low turns on the selected sink-source pair. ENB high switches off the appropriate drivers and the load current decays. If ENB is held low, the current will rise until it reaches the level set by the internal current control circuit. Typically PWM frequency is in 20 kHz to 30 kHz range. If the ENB high pulse width exceeds 3 ms, the gate outputs are disabled. The Enable logic is summarized in the following table:

ENB Pin Setting	Outputs	Outputs State		
0	On	Drive		
1	Source Chopped	Slow Decay with Synchronous Rectification		
1 for > 3 ms typical	Off	Disable		

Fixed Off-Time The A4931 fixed off-time is set to 25 μ s nominal.

PWM Blank Timer When a source driver turns on, a current spike occurs due to the reverse recovery currents of the clamp diodes as well as switching transients related to distributed capacitance in the load. To prevent this current spike from erroneously resetting the source Enable latch, the sense comparator is blanked. The blanking timer runs after the off-time counter com-

pletes, in order to provide the blanking function. The blanking timer is reset when ENB is chopped or DIR is changed. With external PWM control, a DIR change or an ENB on triggers the blanking function. The duration is fixed at 1.5 µs.

Synchronous Rectification When a PWM-off cycle is triggered, either by a chop command on ENB or by an internal fixed off-time cycle, load current recirculates. The A4931 synchronous rectification feature turns on the appropriate MOSFETs during the current decay, and effectively shorts out the body diodes with the low $R_{DS(on)}$ driver. This lowers power dissipation significantly and can eliminate the need for external Schottky diodes.

Brake Mode A logic low on the BRAKEZ pin activates Brake mode. A logic high allows normal operation. Braking turns on all three sink drivers, effectively shorting out the motor-generated BEMF. The BRAKEZ input overrides the ENB input and also the Lock Detect function.

It is important to note that the internal PWM current control circuit does not limit the current when braking, because the current does not flow through the sense resistor. The maximum current can be approximated by $V_{\rm BEMF}/\,R_{\rm LOAD}.$ Care should be taken to insure that the maximum ratings of the A4391 are not exceeded in the worse case braking situation, high speed and high inertial load.

HBIAS Function This function provides a power supply of 7.5 V, current-limited to 30 mA. This reference voltage is used to power the logic sections of the IC and also to power the external Hall elements.

Standby Mode To prevent excessive power dissipation due to the current draw of the external Hall elements, Standby mode turns off the HBIAS output voltage. Standby mode is triggered

by holding ENB high for longer than 3 ms. Note that Brake mode overrides Standby mode, so hold the BRAKEZ pin high in order to enter Standby mode.

Charge Pump The internal charge pump is used to generate a supply above V_{BB} to drive the high-side MOSFETs. The voltage on the VCP pin is internally monitored, and in case of a fault condition, the outputs of the device are disabled.

Fault Shutdown In the event of a fault due to excessive junction temperature or due to low voltage on VCP or VBB, the outputs of the device are disabled until the fault condition is removed. At power-up the UVLO circuit disables the drivers.

Overvoltage Protection VBB is monitored to determine if a hazardous voltage is present due to the motor generator pumping up the supply bus. When the voltage exceeds $V_{\rm BBOV}$, the synchronous rectification feature is disabled.

Overtemperature Protection If die temperature exceeds approximately 170°C, the Thermal Shutdown function will disable the outputs until the internal temperature falls below the 15°C hysteresis.

Hall State Reporting The FG1 pin is an open drain output that changes state at each transition of an external Hall element. The FG2 pin is an open drain output that changes state at each HAx transition.

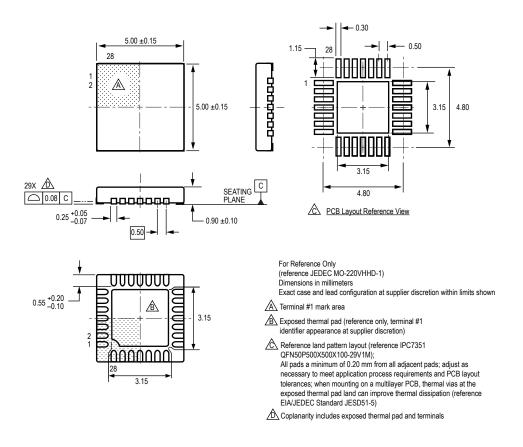
Lock Detect Function The IC will evaluate a locked rotor condition under either of these two different conditions:

- The FG1 signal is not consistently changing.
- The proper commutation sequence is not being followed. The motor can be locked in a condition in which it toggles between two specific Hall device states.

Both of these fault conditions are allowed to persist for period of time, t_{lock} . t_{lock} is set by capacitor connected to CLD pin. C_{LD} produces a triangle waveform (1.67 V peak-to-peak) with frequency linearly related to the capacitor value. t_{lock} is defined as 127 cycles of this triangle waveform, or:

$$t_{\text{lock}} = C_{\text{LD}} \times 20 \text{ s/}\mu\text{F}$$

After the wait time, t_{lock} , has expired, the outputs are disabled, and the fault is latched. These fault conditions can only be cleared by any one of the following actions:


- Rising or falling edge on the DIR pin
- VBB UVLO threshold exceeded (during power-up cycle)
- ENB pin held high for $> t_{lock} / 2$

The Lock Detect function can be disabled by connecting CLD to GND.

When the A4931 is in Brake mode, the Lock Detect counter is disabled.

ET Package, 28-Contact QFN

Copyright ©2007-2010, Allegro MicroSystems, Inc.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:

www.allegromicro.com

