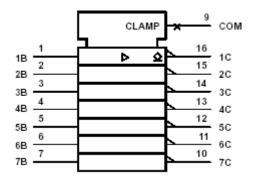
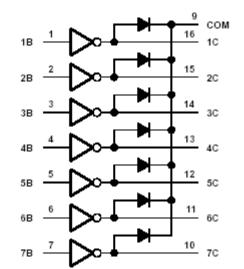

ILN2003A

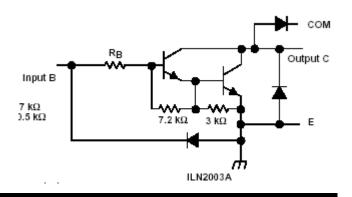
HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS


The ILN2003A are monolithic high-voltage, high-current Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with commoncathode clamp diodes for switching inductive loads. The collectorcurrent rating of a single Darlington pair is 500 mA. The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The ILN2003A has a 2.7-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

- 500-mA Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay Driver Applications


LOGIC SYMBOL



SCHEMATICS (each Darlington Pair)

All resistor values shown are nominal.

ILN2003A:
$$R_B = 2.7 \text{ k}\Omega$$

2011, March, Rev. 04

LOGIC DIAGRAM

Absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-emitter voltage	50 V
Input voltage, V _I (see Note 1)	30 V Peak
collector current (see Figures 14 and 15)	500 mA
Output clamp current, I _{OK}	500 mA
Total emitter-terminal current	-2.5 A
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	-40° C to 85° C
Storage temperature range, Tstg	-65° C to 150° C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted. * Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Dissipation Rating Table

Package	T _A =25°C Power Rating	Derating Factor Above T _A =25°C	T _A =85°C Power Rating
D	950mW	7.6mW/ºC	494mW
Ν	1150mW	9.2mW/°C	598mW

Electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

	Parameter	Test Figure	Test Conditions		Min	Тур	Max	Unit									
		6 V _{CE} =2V	I _C =125mA														
								I _C =200mA			2.4						
X 7			V _{CE} =2V	I _C =250mA			2.7	v									
V _{I(on)}	On-state Input Voltage			I _C =275mA													
				I _C =300mA			3										
				I _C =350mA													
	Q 11		I _I =250uA	I _C =100mA		0.9	1.1										
V _{CE(sat)}	Collector-emitter	5	I _I =350uA	I _C =200mA		1	1.3	V									
	saturation voltage		I _I =500uA	I _C =350mA		1.2	1.6										
		1	V _{CE} =50V	I _I =0			50										
I _{CEX}	Collector outoff current	2	$V_{CE}=50V$,	I _I =0			100	uA									
		2	2	2	2	Z	Z	Z	2	Z	Z	T _A =85°C	V _I =1V				
V _F	Clamp forward voltage	8	I _F =350mA			1.7	2	V									
т	Off state input current	2	2	2	+ 2	3	3	3	3	V _{CE} =50V	I _C =500uA	50	65		uA		
I _{I(off)}	Off-state input current	3	T _A =85°C	$I_{\rm C}$ =300uA	50	05		uA									
	Input current	4	$V_I=2.4V$			0.4	0.7										
II			it 4	V _I =5V					mA								
											V _I =12V						
I _R	Clamp reverse current	7	$V_R = 50V$				50	uA									
			$V_R = 50V$	T _A =85°C			100	uA									
CI	Input capacitance		V _I =0	f=1MHz		15	25	pF									

Switching Characteristics, T_A=25°C

Parameter	Test Conditions	Min	Тур	Max	Unit
t _{PLH} Propagation delay time, low-to-high-level output	See Figure 9		0.25	1	us
t _{PHL} Propagation delay time, high -to- low -level output			0.25	1	us
V _{OH} High-level output voltage after switching	$V_s=50V$, $I_0=300mA$, See Figure 10	V _s -20			mV

PARAMETER MEASUREMENT INFORMATION

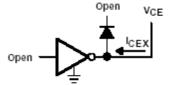


Figure 1. I_{CEX} Test Circuit

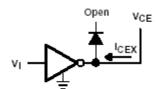


Figure 2. I_{CEX} Test Circuit

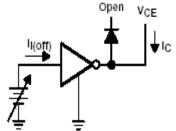


Figure 3. II(off) Test Circuit

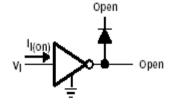
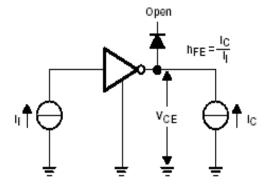



Figure 4. I_I Test Circuit

NOTE: II is fixed for measuring V_{CE(sat)}, variable for measuring h_{FE}. Figure 5. h_{FE}, V_{CE(sat)} Test Circuit

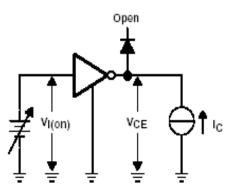
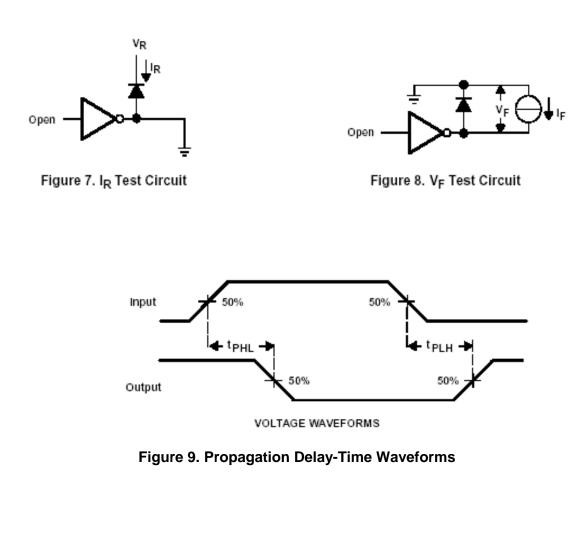
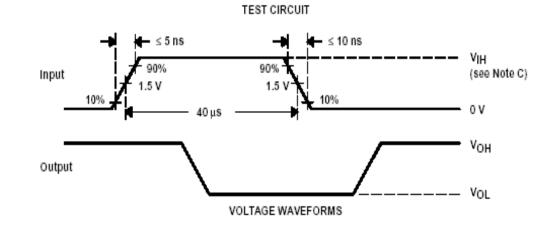
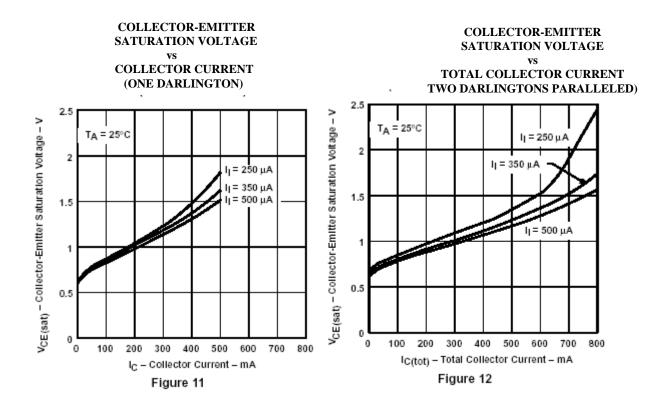
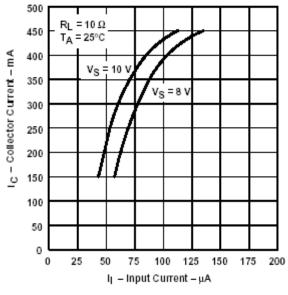
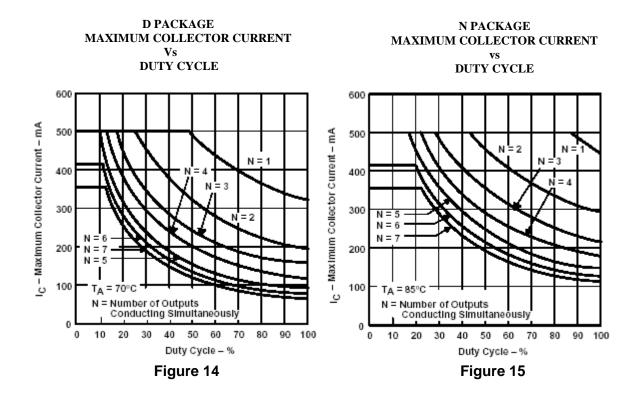




Figure 6. V_{I(on)} Test Circuit



NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_0 = 50 \Box$. B. C_L includes probe and jig capacitance. C. $V_{IH} = 3 V$;




TYPICAL CHARACTERISTICS

COLLECTOR CURRENT vs INPUT CURRENT

THERMAL INFORMATION

APPLICATION INFORMATION

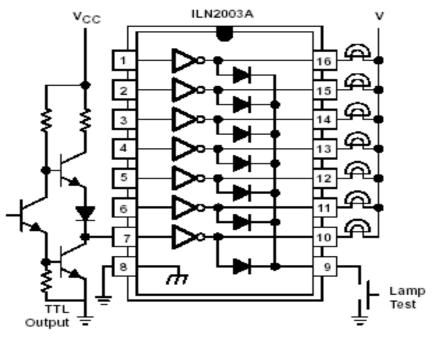
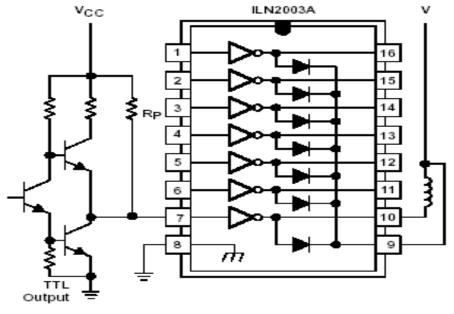
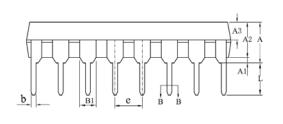
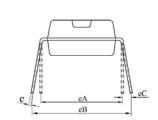
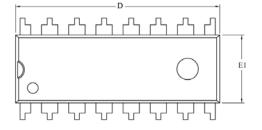


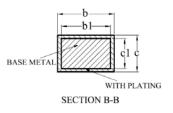
Figure 16. TTL to Load



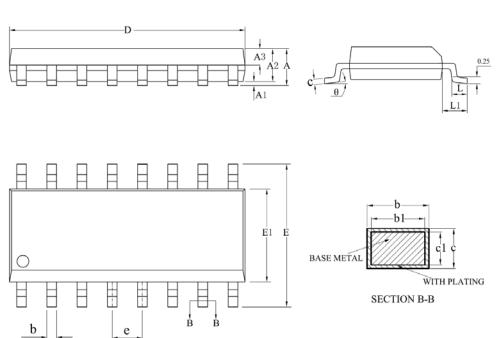

Figure 17. Use of Pullup Resistors to Increase Drive Current




2011, Mach, Rev. 04


ILN2003A

DIP-16



	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
А	3.60	3.80	4.00	
A1	0.51	_	_	
A2	3.10	3.30	3.50	
A3	1.42	1.52	1.62	
b	0.44	_	0.53	
b1	0.43	0.46	0.48	
B1	1	.52BSC	5	
с	0.25		0.31	
c1	0.24	0.25	0.26	
D	18.90	19.10	19.30	
E1	6.15	6.35	6.55	
e	:	2.54BSC	2	
eA		7.62BSC	2	
eB	7.62	_	9.50	
eC	0	_	0.94	
L	3.00	_	_	
	80*80			
L/F载体尺寸 (Mil)	110*140			
	140*170			

SOP-16

SECTION B-B

	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
А	_	_	1.75	
A1	0.10	_	0.25	
A2	1.35	1.40	1.45	
A3	0.60	0.65	0.70	
b	0.39	_	0.48	
b1	0.38	0.41	0.43	
с	0.21	_	0.26	
cl	0.19	0.20	0.21	
D	9.70	9.90	10.10	
Е	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
e	1.27BSC			
L	0.50	—	0.80	
L1	1.05BSC			
θ	0	_	8°	
L/F载体尺寸 (mil)				
1011/	90*180			

e

b

 \square

B